quarta-feira, 5 de novembro de 2014

Probabilidade/ probabilidade da união de dois eventos





Dados dois eventos A e B de um espaço amostral S a probabilidade de ocorrer A ou B é dada por: 

P(A U B) = P(A) + P(B) – P(A ∩ B) 


Verificação: 
O Número de elementos de A U B é igual à soma do número de elementos de A com o número de elementos de B, menos uma vez o número de elementos de A ∩ B que foi contado duas vezes (uma em A e outra em B). Assim temos: 

n(AUB) = n(A) + n(B) – n(A∩B) 

P(AUB) = P(A) + P(B) – P(A∩B) 

Exemplo: 
Numa urna existem 10 bolas numeradas de 1 a 10. Retirando uma bola ao acaso, qual a probabilidade de ocorrer múltiplos de 2 ou múltiplos de 3? 



A é o evento “múltiplo de 2”. 
B é o evento “múltiplo de 3”. 

P(AUB) = P(A) + P(B) – P(A∩B) =  

1) Uma bola será retirada de uma sacola contendo 5 bolas verdes e 7 bolas amarelas. Qual a probabilidade desta bola ser verde?
Neste exercício o espaço amostral possui 12 elementos, que é o número total de bolas, portanto a probabilidadede ser retirada uma bola verde está na razão de 5 para 12.
Sendo S o espaço amostral e E o evento da retirada de uma bola verde, matematicamente podemos representar a resolução assim:
RespostaA probabilidade desta bola ser verde é 5/12
Na parte teórica vimos que a probabilidade da união de dois eventos pode ser calculada através da fórmula  e no caso da intersecção dos eventos ser vazia, isto é, não haver elementos em comum aos dois eventos, podemos simplesmente utilizar .
Ao somarmos a quantidade de fichas obtemos a quantidade 14. Esta quantidade é o número total de elementos do espaço amostral.
Neste exercício os eventos obter ficha verde e obter ficha amarela são mutuamente exclusivos, pois a ocorrência de um impede a ocorrência do outro, não há elementos que fazem parte dos dois eventos. Não há bolas verdes que são também amarelas. Neste caso então podemos utilizar a fórmula:
Note que esta fórmula nada mais é que a soma da probabilidade de cada um dos eventos.
O evento de se obter ficha verde possui 7 elementos e o espaço amostral possui 14 elementos, que é o número total de fichas, então a probabilidade do evento obter ficha verde ocorrer é igual a 7/14:
Analogamente, a probabilidade do evento obter ficha amarela, que possui 2 elementos, é igual a 2/14:
Observe que poderíamos ter simplificado as probabilidades, quando então 7/14 passaria a 1/2 e 2/14 a 1/7, no entanto isto não foi feito, já que para somarmos as duas probabilidades precisamos que elas tenham um denominador comum:
Este exercício foi resolvido através da fórmula da probabilidade da união de dois eventos para que você tivesse um exemplo da utilização da mesma e pudesse aprender quando utilizá-la, mas se você prestar atenção ao enunciado, poderá ver que poderíamos tê-lo resolvido de uma outra forma, que em alguns casos pode tornar a resolução mais rápida. Vejamos:
Note que a probabilidade de se obter ficha azul é 5 em 14, ou seja, 5/14. Então a probabilidade de não se obter ficha azul é 9 em 14, pois:
1 que aparece na expressão acima se refere à probabilidade do espaço amostral.
Note que utilizamos o conceito de evento complementar, pois se não tivermos uma ficha azul, só poderemos ter uma ficha verde ou uma ficha amarela, pois não há outra opção.
RespostaA probabilidade de ela ser verde ou amarela é 9/14
Apresentamos vários exercícios resolvidos sobre probabilidade, todos retirados de provas de concursos realizados pelo Brasil.


Prova Resolvida BNB 2014 – FGV – Questão 22. Pedro pergunta a Paulo se ele pode trocar uma nota de R$ 100,00 por duas notas de R$ 50,00. Paulo responde que tem exatamente R$ 200,00 na carteira em notas de R$ 50,00, R$ 20,00 e R$ 10,00, mas não sabe quantas notas tem de cada valor. Sabe apenas que tem pelo menos uma de cada valor. Considere que todas as distribuições possíveis de notas de R$50,00, R$20,00 e R$10,00 que podem ocorrer na carteira de Paulo sejam igualmente prováveis. A probabilidade de que Paulo possa fazer a troca pedida por Pedro é de:
a) 2/13
b) 4/13
c) 5/13
d) 6/13
e) 7/13
Sabemos que para calcular probabilidade, basta dividirmos o número de casos favoráveis pelo número de casos possíveis.
Como ele tem pelo menos uma nota de cada, então ele consegue formar 80,00 com uma de 10, uma de 20 e uma de 50.

Temos que saber como podemos formar os outros 120,00. Vamos dividir em casos:

– Se ele não possuir mais notas de 50, teremos que formar 120,00 com notas de 10 e 20:
São 7 opções: 12 notas de 10; 1 de 20 e 10 de 10; 2 de 20 e 8 de 10; 3 de 20 e 6 de 10; 4 de 20 e 4 de 10; 5 de 20 e 2 de 10; 6 de 20.

– Se ele possuir mais uma nota de 50, teremos que formar 70,00 com notas de 10 e 20:
São 4 opções: 7 notas de 10; 1 de 20 e 5 de 10; 2 de 20 e 3 de 10; 3 de 20 e 1 de 10.

– Se ele possuir mais duas notas de 50, teremos que formar 20,00 com notas de 10 e 20:
São 2 opções: 1 de 20 ou 2 de 10.

Verificamos que o número de casos possíveis é 7 + 4 + 2 = 13
Para contarmos o número de casos favoráveis, devemos considerar as opções onde ele tem pelo menos duas notas de 50, ou seja, 4 + 2 = 6.
Probabilidade = 6/13


Prova Resolvida BB 2012 – Cesgranrio – Questão 16. Uma moeda não tendenciosa é lançada até que sejam obtidos dois resultados consecutivos iguais. Qual a probabilidade de a moeda ser lançada exatamente três vezes?
(A) 1/8
(B) 1/4
(C) 1/3
(D) 1/2
(E) 3/4

Primeira jogada: qualquer resultado serve (probabilidade 1)
Segunda jogada: só serve o resultado que não aconteceu da segunda vez (probabilidade ½)
Terceira jogada: só serve o mesmo resultado da segunda jogada (probabilidade ½)

Logo: 1 x ½ x ½ = ¼

Prova Resolvida BB 2011 – Fundação Carlos Chagas – Questão 39. Para disputar a final de um torneio internacional de natação, classificaram-se 8 atletas: 3 norte-americanos, 1 australiano, 1 japonês, 1 francês e 2 brasileiros. Considerando que todos os atletas classificados são ótimos e têm iguais condições de receber uma medalha (de ouro, prata ou bronze), a probabilidade de que pelo menos um brasileiro esteja entre os três primeiros colocados é igual a:
(A) 5/14
(B) 3/7.
(C) 4/7.
(D) 9/14.
(E) 5/7

Dica: Quando aparecer na questão `pelo menos um`, devemos encontrar a probabilidade de não acontecer nenhum,  ou seja, de não termos brasileiros no pódio, e depois diminuirmos de 1.

Probabilidades:

De nenhum brasileiro ganhar ouro = 6/8 = 3/4
De nenhum brasileiro ganhar prata = 5/7 (desconsideramos a medalha de ouro)
De nenhum brasileiro ganhar bronze = 4/6 = 2/3 (desconsideramos as medalhas de ouro ou prata)

Então:

P (não termos brasileiros no pódio) = 3/4 x 5/7 x 2/3 = 5/14

P (termos pelo menos um brasileiro no pódio) = 1 – 5/14 = 14/14 – 5/14 = 9/14

Prova Resolvida BB 2010 – Cesgranrio – Questão 20. Uma urna contém 5 bolas amarelas, 6 bolas azuis e 7 bolas verdes. Cinco bolas são aleatoriamente escolhidas desta urna, sem reposição. A probabilidade de selecionar, no mínimo, uma bola de cada cor é

prova-resolvida-bb-2010-2

Sejam os eventos:

A = Selecionar amarelas
B = Selecionar azuis
C = Selecionar verdes

Queremos calcular a probabilidade de selecionarmos pelo menos uma bola de cada cor, ou seja, P(A∩B∩C).

Veja no diagrama ao lado que P(A∩B∩C) = P(A∪B∪C) – P(A∪B) – P(A∪C) – P(B∪C) + P(A) + P(B) + P(C)

Temos que:

prova-resolvida-bb-2010-3

prova-resolvida-bb-2010-4
Prova Resolvida TRT ES 2009 – Cespe – Questões 48 e 49. Em 2007, no estado do Espírito Santo, 313 dos 1.472 bacharéis em direito que se inscreveram no primeiro exame do ano da Ordem dos Advogados do Brasil (OAB) conseguiram aprovação.
Em 2008, 39 dos 44 bacharéis provenientes da Universidade Federal do Espírito Santo (UFES) que fizeram a primeira fase do exame da OAB foram aprovados.
Com referência às informações contidas nos textos acima, julgue os itens que se seguem.


48 Se um dos bacharéis em direito do estado do Espírito Santo inscritos no primeiro exame da OAB, em 2007, fosse escolhido aleatoriamente, a probabilidade de ele não ter sido um dos aprovados no exame seria superior a 70% e inferior a 80%.


Inscritos: 1472
Reprovados: 1472 – 313 = 1159
1159/1472 = 0,787 = 78,7%

CERTO
49 Considerando que, na primeira fase do exame da OAB de 2008, 87,21% dos bacharéis em direito da Universidade Federal de Pernambuco (UFPE) tenham sido aprovados, a probabilidade de se escolher ao acaso um dos aprovados entre os bacharéis da UFPE que fizeram esse exame será maior que a probabilidade de se escolher ao acaso um dos aprovados entre os bacharéis da UFES e que também fizeram o exame da OAB.

Probabilidade de se escolher um aprovado entre os alunos da UFPE: 87,21%
Probabilidade de se escolher um aprovado entre os alunos da UFES: 39/44 = 0,8864 = 88,64%

ERRADO

Exercícios Resolvidos - Probabilidades
1 – Uma moeda é viciada, de forma que as caras são três vezes mais prováveis de aparecer do que as coroas. Determine a probabilidade de num lançamento sair coroa.
Solução:
Seja k a probabilidade de sair coroa. Pelo enunciado, a probabilidade de sair cara é igual a 3k.
A soma destas probabilidades tem de ser igual a 1.
Logo, k + 3k = 1 \ k = 1/4.
Portanto, a resposta é 1/4 = 0,25 = 25%.

2 – Uma moeda é viciada, de forma que as coroas são cinco vezes mais prováveis de aparecer do que as caras. Determine a probabilidade de num lançamento sair coroa.
Resposta: 5/6 = 83,33%
3 – Três estudantes A, B e C estão em uma competição de natação. A e B têm as mesmas chances de vencer e, cada um, tem duas vezes mais chances de vencer do que C. Pede-se calcular a probabilidades de A ou C vencer.
Solução:
Sejam p(A), p(B) e p(C), as probabilidades individuais de A, B, C, vencerem. Pelos dados do enunciado, temos:
p(A) = p(B) = 2.p(C).

Seja p(A) = k. Então, p(B) = k e p(C) = k/2.
Temos: p(A) + p(B) + p(C) = 1.

Isto é explicado pelo fato de que a probabilidade de A vencer ou B vencer ou C vencer é igual a 1. (evento certo).
Assim, substituindo, vem:
k + k + k/2 = 1 \ k = 2/5.
Portanto, p(A) = k = 2/5, p(B) = 2/5 e p(C) = 2/10 = 1/5.

A probabilidade de A ou C vencer será a soma dessas probabilidades, ou seja 2/5 + 1/5 = 3/5.

4 – Uma moeda é viciada, de maneira que as CARAS são três vezes mais prováveis de aparecer do que as COROAS. Calcule as probabilidades de num lançamento sair COROA.

Resposta: 1/4.
5 – Um dado é viciado, de modo que cada número par tem duas vezes mais chances de aparecer num lançamento, que qualquer número ímpar. Determine a probabilidade de num lançamento aparecer um número primo.
Solução:
Pelo enunciado, podemos escrever:
p(2) = p(4) = p(6) = 2.p(1) = 2.p(3) = 2.p(5).
Seja p(2) = k. Poderemos escrever:
p(2) + p(4) + p(6) + p(1) + p(3) + p(5) = 1, ou seja: a soma das probabilidades dos eventos elementares é igual a 1.

Então, substituindo, vem:
k + k + k + k/2 + k/2 + k/2 = 1 \ k = 2/9.

Assim, temos:
p(2) = p(4) = p(6) = 2/9
p(1) = p(3) = p(5) = 2/18 = 1/9.

O evento sair número primo corresponde a sair o 2, ou o 3 ou o 5. Logo,
p(2) + p(3) + p(5) = 2/9 + 1/9 + 1/9 = 4/9.

6 – Use o mesmo enunciado anterior e determine a probabilidade de num único lançamento sair um número ímpar.
Resposta: 1/3
7 – Um cartão é retirado aleatoriamente de um conjunto de 50 cartões numerados de 1 a 50. Determine a probabilidade do cartão retirado ser de um número primo.
Solução:
Os números primos de 1 a 50 são: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 e 47, portanto, 15 números primos.
Temos, portanto, 15 chances de escolher um número primo num total de 50 possibilidades. Portanto, a probabilidade pedida será igual a p = 15/50 = 3/10.

8 - Use o mesmo enunciado anterior e determine a probabilidade de numa única retirada, sair um cartão com um número divisível por 5.
Resposta: 1/5.
9 – Das 10 alunas de uma classe, 3 tem olhos azuis. Se duas delas são escolhidas ao acaso, qual é a probabilidade de ambas terem os olhos azuis?
Solução:
Existem C10,2 possibilidades de se escolher duas pessoas entre 10 e, existem C3,2 possibilidades de escolher duas alunas de olhos azuis entre as três. Logo, a probabilidade procurada será igual a:
P = C3,2 / C10,2 = (3.2/2.1)/(10.9/2.1) = 6/90 = 3/45 = 1/15.
Comentários sobre o cálculo de Cn,p.
Como já sabemos da Análise Combinatória ,

Esta é a forma tradicional de se calcular Cn,p.
Na prática, entretanto, podemos recorrer ao seguinte expediente: Cn,p  possui sempre p fatores no numerador a partir de n, decrescendo uma unidade a cada fator e p fatores no denominador a partir de p, decrescendo uma unidade a cada fator.
Exemplos:
C10,4 = (10.9.8.7)/(4.3.2.1) = 210.
C8,3 = (8.7.6)/(3.2.1) = 56.
C16,3 = (16.15.14)/(3.2.1) = 560.
C12,4 = (12.11.10.9)/(4.3.2.1) = 495.
C10,5 = (10.9.8.7.6)/(5.4.3.2.1) = 252.
10 – Considere o mesmo enunciado da questão anterior e calcule a probabilidade de na escolha de duas alunas, nenhuma ter olhos azuis.
Resposta: 7/15.
Dica: como nenhuma das alunas deve ter olhos azuis, restam 10 – 3 = 7 alunas. Portanto,

Um dado é lançado. Qual é a probabilidade de obtermos um número divisor de 6?
Como vimos acima, o espaço amostral do lançamento de um dado é:
S = { 1, 2, 3, 4, 5, 6 }
Como estamos interessados apenas nos resultados divisores de 6, o evento E é representado por:
E = { 1, 2, 3, 6 }
Então n(E) = 4 e n(S) = 6, portanto:
Podemos também apresentar o resultado na forma de uma porcentagem:
RespostaA probabilidade de se obter um número divisor de 6 é 2/3 ou 66,67%.



...

Nenhum comentário:

Postar um comentário

Deixe seu email para receber gratuitamente atualizações do blog